On unsymmetric collocation by radial basis functions
نویسندگان
چکیده
Solving partial diierential equations by collocation with radial basis functions can be eeciently done by a technique rst proposed by E. Kansa in 1990. It rewrites the problem as a generalized interpolation problem, and the solution is obtained by solving a (possibly large) linear system. The method has been used successfully in a variety of applications, but a proof of nonsingularity of the linear system still was missing. This paper shows that a general proof of this fact is impossible. However, numerical evidence shows that cases of singularity are rare and have to be constructed with quite some eeort.
منابع مشابه
Greedy Unsymmetric Collocation
We present greedy unsymmetric collocation schemes for solving linear elliptic partial differential equations using radial basis functions. The proposed approach circumvents the ill-conditioning problem associated with the standard collocation technique and enables the efficient solution of problems requiring a large set of collocation points. Numerical studies indicate that the accuracy of gree...
متن کاملMultiscale RBF collocation for solving PDEs on spheres
In this paper, we discuss multiscale radial basis function collocation methods for solving certain elliptic partial differential equations on the unit sphere. The approximate solution is constructed in a multi-level fashion, each level using compactly supported radial basis functions of smaller scale on an increasingly fine mesh. Two variants of the collocation method are considered (sometimes ...
متن کاملCoupling Projection Domain Decomposition Method and Meshless Collocation Method Using Radial Basis Functions in Electromagnetics
This paper presents an efficient meshless approach for solving electrostatic problems. This novel approach is based on combination of radial basis functions-based meshless unsymmetric collocation method with projection domain decomposition method. Under this new method, we just need to solve a Steklov-Poincaré interface equation and the original problem is solved by computing a series of indepe...
متن کاملTHE COMPARISON OF EFFICIENT RADIAL BASIS FUNCTIONS COLLOCATION METHODS FOR NUMERICAL SOLUTION OF THE PARABOLIC PDE’S
In this paper, we apply the compare the collocation methods of meshfree RBF over differential equation containing partial derivation of one dimension time dependent with a compound boundary nonlocal condition.
متن کاملApproximate solution of the fuzzy fractional Bagley-Torvik equation by the RBF collocation method
In this paper, we propose the spectral collocation method based on radial basis functions to solve the fractional Bagley-Torvik equation under uncertainty, in the fuzzy Caputo's H-differentiability sense with order ($1< nu < 2$). We define the fuzzy Caputo's H-differentiability sense with order $nu$ ($1< nu < 2$), and employ the collocation RBF method for upper and lower approximate solutions. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied Mathematics and Computation
دوره 119 شماره
صفحات -
تاریخ انتشار 2001